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1. Download and Installation 

1) SPRESSO is a MATLAB based open source, nonlinear electrophoresis solver. The 

source code and its executable binary file can be downloaded for free at:  

http://microfluidics.stanford.edu/spresso.  

2) Download the code and unzip the file to a desired directory. To run SPRESSO using 

the source code, first navigate to the directory containing the file Spresso.m. Then run 

Spresso.m by opening the file in MATLAB editor and hitting the run command (F5). 

Alternatively, SPRESSO can be run by giving Spresso command on the MATLAB 

command line. Running SPRESSO will cause a graphical user interface (GUI) to appear, 

as shown in Figure 1. 

 

Figure 1: Graphical user interface of SPRESSO code. The screenshot was taken after 

loading a sample input file Case1_ITPDemo.m provided in Input Files directory.  

http://microfluidics.stanford.edu/spresso
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3) To run SPRESSO using the executable version, double click on Spresso.exe file. 

Executable version of the code works only on the Microsoft Windows platform.  Note 

that, for running the  executable version it is necessary to install the Matlab Component 

Runtime (MCR) library. MCR is available for free download on the SPRESSO download 

page. Whenever possible, we suggest running the code using the source code so as to 

avoid machine and operating system specific issues. 

 

2. Introduction to GUI and input variables 

As described in Section 1, running SPRESSO causes a GUI to appear on the 

computer screen. The GUI can be used to create and run input files, and visualize 

simulation results in real time.  We provide several example cases in the Input Files 

directory, to help users familiarize with GUI and the input parameters. Throughout this 

manual we will refer to a model ITP problem described in the Case1_ITPDemo.m file 

in the Input Files directory. To load the input file, click Load file on GUI and select the 

above mentioned input file.  Loading the input file populates various fields in the GUI. 

Figure 1 shows screenshot of the GUI after loading Case1_ITPDemo.m  input file.  

The input file can also be viewed by opening it in the MATLAB editor. Below we 

discuss various simulation parameters in a typical input file, and the corresponding fields 

in GUI.   

 

1) IonicEffectFlag 

 Description: Determines whether ionic strength corrections on electrophoretic 

mobility and ionic activity are applied or not.  

 Usage: Takes on values 0 (ionic strength corrections disabled), or 1 (ionic 

strength corrections enabled). 

  GUI:  Select Yes or No from the Ionic Strength Correction drop 

down menu to switch between 1 and 0, respectively. 
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2) PcentIonicChange 

 Description:  Controls the change in local ionic strength during simulation after 

which ionic strength corrections are applied. This option is applicable only if 

ionic strength effects are activated using IonicEffectFlag.  

 Usage: Takes on non-negative values in terms of percentage change. For 

example, PcentIonicChange=10, indicates that ionic strength effects will be 

evaluated if ionic strength of solution changes by more than 10% during 

simulation. 

 GUI: Input value in the % Ionic Strength Change box. Input is available 

only if Yes is selected in the Ionic Strength Dependence drop down menu. 

3) L1 

 Description:  Leftmost coordinate of the computational domain.  

 Usage: Default value is 0, and we suggest not changing this parameter in the 

input file. 

 GUI: Not available in GUI. 

4) L2 

 Description:  Rightmost coordinate of the computational domain.  

 Usage: Value corresponds to the length of computational domain in meter unit. 

 GUI:  Input value in the Domain Length box. 

5) N 

 Description:  Number of grid points.  

 Usage: Takes on non-negative integer values. Typical values range from 100 to 

1000 grid points.  

 GUI:  Input value in the Grid Points box. 
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6) DChannel 

 Description:  Width of the separation channel for D-shaped cross-section, and 

diameter for circular cross-section. 

 Usage: Takes on non-negative values in meter unit. 

 GUI:  Input value in the Dim 2 box. 

7) hChannel 

 Description: Depth of the separation channel for D-shaped cross-section, and 

diameter for circular cross-section 

 Usage: Takes on non-negative values in meter unit. 

 GUI:  Input value in the Dim 1 box. 

8) ChannelShape 

 Description:  Describes whether channel cross-section is D-shaped or circular. 

 Usage: Takes on values 1 for circular channel, and 2 for D-shaped channel.  

 GUI:  Choose the cross-section shape in the Channel Shape drop down menu. 

9) Current 

 Description:  Current applied through the system. 

 Usage: Takes on positive and negative values in ampere unit. Positive values of  

Current signify rightwards pointing electric field, and negative values for electric 

leftward pointing electric field. 

 GUI:  Input value in the Current box. 

10) tEnd  

 Description:  Physical time for which problem is simulated. 

 Usage: Takes on positive values in seconds.  

 GUI:  Input value in the Simulation time box. 

 



5 

 

11) SteadyStateFlag  

 Description:  Indicates whether simulation is solved in a moving reference frame 

or stationary laboratory frame.  

 Usage: Takes on values 0 and 1. The value 1 indicates that simulation is solved in 

a frame of reference moving with the first species mentioned in the 

InputTable. The value 0 indicates that simulation is performed in a stationary 

laboratory frame. 

 GUI:  Choose Yes or No from the Moving Frame drop down menu. 

12) PrepareGridStage  

 Description:  Indicates whether grid should be refined prior to the application of 

electric field.  

 Usage: Takes on values 0 and 1. The value 1 enables adaptive grid refinement, 

and value 0 disables grid refinement.  

 GUI:  Choose Yes or No from the Prepare Grid drop down menu. 

13) AdaptGrid.Coeff 

 Description:  Controls the speed of grid adaptation.  

 Usage: Takes on non-negative values. Speed of grid adaptation increases with 

increase in value of AdaptGrid.Coeff. Typical values range from 0-10. The 

value 0 indicates no grid adaptation. Typical value for ITP problems is 1, and for 

CZE problems is 0.1.  

 GUI:  Input value in the Adaptive Grid Speed  box. 

14) AdaptGrid.PointsAtInterface  

 Description:  Controls the clustering of grid points during adaptive grid 

refinement.  

 Usage: Takes on non-negative values. Higher values lead to greater clustering of 

grid points at regions with large gradients. Typical values range from 0-10. The 
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value 0 indicates no grid adaptation. Typical value for ITP problems is 1, and for 

CZE problems is 0.1.  

 GUI:  Input value in the Clustering Level box. 

15) DeltaCounterNextPlot  

 Description:  Controls the number of simulation time steps after which data are 

saved and plotted on GUI. Data are saved in the directory containing the input 

file. The data file has the same name as input file but with .mat extension. 

 Usage: Takes on positive integer values. Typical value is 100. Smaller values will 

slow the simulation as more resources will be required for plotting the data. 

 GUI:  Input value in the Plotting Interval box. 

16) SpatialDiscFlag  

 Description:  Indicates the spatial discretization scheme. 

 Usage: Use 'SLIP' for finite volume SLIP scheme; 'Compact' for sixth-order 

compact scheme; 'Upwind' for first order upwind scheme; and '2nd' for 

centered second order scheme. Note that only the SLIP scheme allows solving 

problems with variable cross-sectional area channels. 

 GUI:  Select desired numerical scheme from the Spatial Discretization 

box. 

17) InjLen  

 Description:  Thickness of the initial concentration boundary at the sample 

injection point. 

 Usage: Takes on positive values in millimeter. The value must be chosen to 

ensure that the concentration boundary lies completely inside the computation 

domain, and there are no concentration gradients at the domain boundaries. This 

ensures proper imposition of boundary conditions.  

 GUI:  Input value in the Injection width box. Note that the GUI allows 

only one injection point. However, multiple sample injection points can be 
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inserted by manually customizing the input file, e.g., using the MATLAB text 

editor. 

18) InjLoc  

 Description:  Location of the initial concentration boundary. 

 Usage: Takes on positive values in millimeter. The value must be chosen to 

ensure that the concentration boundary lies completely inside the computation 

domain, and there are no concentration gradients at the domain boundaries. This 

ensures proper imposition of boundary conditions. 

 GUI:  Input value in the Injection width box. Note that the GUI allows 

only one injection point. However, multiple sample injection points can be 

inserted by manually customizing the input file, e.g., using the MATLAB text 

editor. 

19) Pressurehead  

 Description:  Pressure head across the length of computational domain to include 

hydrodynamic flow. 

 Usage: Takes on negative and positive values in millimeters of water column. 

 GUI:  Click the Pressure/Dispersion button and then input the value in 

Pressure head box.  

20) bPressure  

 Description:  Hydraulic resistance coefficient in Poiseuille's Law. 

 Usage: Dimensionless parameter that takes on positive values. Use value of 32 for 

channels with circular cross-section. 

 GUI:  Click the Pressure/Dispersion button and then input the value in b 

(coeff) box.  

21) betaDispersion  

 Description:  Taylor-Aris dispersion coefficient described by Bercovici et al. [63] 
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 Usage: Dimensionless parameter that takes on positive values.  

 GUI:  Click the Pressure/Dispersion button and then input the value in 

beta (coeff) box.  

22) zVec, phiVec, AnalyteVec, TEVec, LEVec, BackgroundVec   

 Description: Vectors that define initial distribution of analytes, trailing electrolyte 

and leading electrolyte. 

 Usage: Vectors normalized with the highest term, i.e., maximum term should be 

1. User can change these vectors and save the input file using a text editor. Saving 

the input file from GUI will overwrite the user defined vectors with default 

values. 

 GUI:  Default values are used when the input file is saved from GUI. 

23) AreaFunctionText   

 Description: Function defining axial variation of channel cross-sectional area. 

 Usage: The function must be defined in the following format: '@(x) f(x)' . 

Here f(x) is a user-defined function written in a form to allow vectorized 

arithmetic operations. Default value is '@(x) 1 + 0*x' which corresponds to 

axially uniform cross-section. This function is later automatically scaled such that 

the cross-sectional area of left channel inlet is that given by DChannel and 

hChannel dimensions. 

 GUI:  Input the desired function in the Area Variation box. 

 

24) A and AreaRatio 

 Description: Variables to evaluate cross-sectional area variation defined by 

AreaFunctionText.  

 Usage: Use the values initialized by GUI. We suggest not changing these 

parameters. 
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 GUI: Default values are used when the input file is saved from GUI. These 

variables cannot be changed though the GUI. 

25) InputTable 

 Description: Describes chemical species, their ionization states, mobilities, acid 

dissociation constants, and concentrations.  

 Usage: Example input from  Case1_ITPDemo.m  is as follows: 

InputTable =  

{'LE','[-1    80e-009      2.756]',0.05,'LE'; 

'TE','[-1     25e-009      4.756]',0.02,'TE'; 

'BG','[1      20e-009      6.756]',0.13,'Background'; 

'Analyte1','[-1 7e-008     2.756]',0.07,'Analyte'; 

'Analyte2','[-1 6e-008     2.756]',0.03,'Analyte'; 

'Analyte3','[-1 5e-008     4.756]',0.05,'Analyte'; 

'Analyte4','[-1 4e-008     4.756]',0.01,'Analyte';    

'Analyte5','[-1 3e-008     4.756]',0.06,'Analyte';}; 

 The first entry in every row of InputTable is the name of chemical 

species. The species names are shown in GUI to aid data visualization, but they 

do not affect the actual simulation. The second entry in each row should be in the 

following format: 

'[valence mobility  (acid dissociation constant)]'.  

 Multivalent species can be handled using the following format: 

'[...] [...]' 

 The third entry in each row of the InputTable is the species 

concentration in molar units. The last entry of each row describes the initial 

concentration distribution of species. The available options for concentration 

distributions are: 'LE', 'TE', 'Background' and 'Analyte'. 

 GUI: InputTable  can be generated using the GUI by either manually 

inputting the table rows in the above mentioned format, or by using Add and 

Remove buttons to insert required species from the chemical database.  
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26) cMat(:,1), etc. 

 Description: Initial concentration distribution of all species constructed using the 

values defined in InputTable and vectors discussed in (21).  

 Usage: Use default values determined by the GUI. Unless customized species 

distributions are required, we suggest not editing these lines in the input file. 

 GUI: Default values are used when input file is saved from the GUI. These 

variables cannot be changed though GUI.  

27) Miscellaneous features available in GUI 

 Load mat: Checking this option allows starting simulation from the point where 

last simulation ended.  

 Stop/Save: Stops the simulation and saves the data. The data are automatically 

saved if the simulation reaches time tEnd. 

 Stop/Discard: Stops the simulation without saving the data. 

 Pause: Temporarily stops the simulation to allow data visualization. Hitting the 

Pause button for the second time will restart the simulation from the point where 

it was paused.  

 Plot: This drop down menu allows visualization of axial variations in species 

concentration, pH, effective mobility, electric field, conductivity, grid density, 

and cross-sectional area. 

 Caution: Saving the input file through GUI will overwrite any manual changes 

made to the input file. For manually customized input file, the GUI can still be 

used to run and visualize the simulation as usual.  

 

3. Using SPRESSO to explore electrolyte chemistries for ITP 

 SPRESSO allows fast simulations of ITP and thereby minimizes the time required 

for selection of optimal electrolyte chemistries. When the goal of simulations is to 

explore LE-TE electrolyte systems for focusing given analytes in ITP, we suggest using 

the dissipative SLIP scheme without adaptive grid refinement. Although, this approach 

yields relatively dispersed concentration gradients, it correctly predicts zone orders and 
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sample accumulation. Moreover, the SLIP scheme being unconditional stable, even 

without adaptive grid refinement, yields significant reduction in computational time. 

Below, we provide guidelines for performing fast and approximate ITP simulations to 

explore electrolyte chemistries. 

Step 1: One of the simplest methods for setting up SPRESSO simulation is by loading 

and editing an existing input file in the GUI. In this example, we will use the input file 

named Case1_ITPDemo.m. Figure 1 shows screenshot of GUI after loading this input 

file. 

Step2: Edit the input file by choosing the following simulation parameters on GUI: 

Grid Points = 250  

Spatial Discretization = SLIP 

Moving Frame = Yes 

Prepare Grid = No 

Adaptive Grid Speed = 0 

Clustering Level = 0 

 These are the typical numerical parameters that are required for fast, but 

approximate ITP simulations. Disabling adaptive grid refinement yields significant 

reduction in computation time. Also simulating ITP in moving frame of reference allows 

use of smaller computational domain and lesser number of grid points. 

Step 3: Save the input parameters to a different input file by clicking the Save As 

button, and then click Start to run the simulation. Figure 2 shows the GUI with 

updated simulation parameters along with simulated concentration profiles. This 

simulation took less than 15 s on a standard desktop computer. Note that the zone 

boundaries are significantly diffused. Nevertheless, the simulation shows that the model 

electrolyte chemistry enables focusing of analytes ITP. 
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Figure 2: Screenshot of SPRESSO GUI showing typical parameters for performing fast 

and approximate ITP simulations, discussed in Section 3. Such simulations yield 

dispersed zone boundaries but correctly predict ITP zone orders and sample 

accumulation.  

 

4. Using SPRESSO for high-fidelity simulations of ITP 

 There are two approaches to obtain high-accuracy numerical solutions using 

SPRESSO: (1) using the dissipative SLIP scheme with adaptive grid refinement to 

minimize numerical diffusion, and (2) using the non-dissipative sixth-order compact 

scheme with adaptive grid refinement to avoid non-physical oscillations. While SLIP 

scheme yields robust simulations with no oscillations, it requires careful choice grid 

density to minimize numerical diffusion. Whereas, the non-dissipative compact scheme 

yields high-resolution solutions with minimal numerical diffusion, provided that a non-

oscillatory solution is achieved. Unlike the SLIP scheme, the sixth-order compact scheme 

is not unconditionally stable, and therefore it is necessary to vary the grid density (by 

changing the number of grid points, and/or varying adaptive grid parameters) to ensure a 

non-oscillatory solution.  
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 For unsteady ITP problems either of the above approach can be used. Whereas, 

for steady state ITP problems, a hybrid approach based on SLIP and compact schemes 

can allow faster simulations. In this hybrid approach, we first simulate the ITP problem 

using the SLIP scheme (without adaptive grid) in a moving frame of reference. Once an 

approximate steady state is attained, we stop the simulation, save the data, and restart the 

simulation using the compact scheme. This approach yields faster simulations because 

the first step involving the SLIP scheme (without adaptive grid) gets past the initial 

transients with relative ease. Simulating such transients with compact scheme would take 

significantly longer duration. Whereas, the second step involving compact scheme starts 

with an initial condition resembling the actual steady state solution. Better initial starting 

condition for the steady state simulation speedup up convergence to actual solution.  

Below, we discuss an example of steady state ITP simulation using hybrid SLIP and 

compact scheme approach: 

Step 1: Follow the steps outlined in Section 3 to solve the required ITP problem with 

SLIP scheme and no adaptive grid refinement. Figure 2 shows screenshot of the GUI 

with necessary simulation parameters and simulated concentration profiles. Next, save 

the simulation data by clicking the Stop/Save button.  The simulation data are 

automatically saved if the simulation reaches completion. 

Step2: Edit the input file by choosing the following simulation parameters on GUI: 

Grid Points = 250  

Spatial Discretization = Compact 

Moving Frame = Yes 

Prepare Grid = Yes 

Adaptive Grid Speed = 2 

Clustering Level = 2 

Step 3: Save the input parameters to the same input file by clicking Save. Also, turn on 

the Load mat option on GUI to load data saved from the previous simulation. The 

simulated data from Step 1 will then be used as the initial condition for next simulation. 

Next, click Start to run the simulation.  

Figure 3 shows screenshot of the GUI with simulation parameters discussed in 

Step 2, along with simulated concentration profiles. This simulation took approximately 
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60 s to attain steady state on a standard desktop computer. Combined with 15 s of 

computational time taken by Step 1, the hybrid approach leveraging the SLIP and 

compact schemes takes approximately 75 s of computational time. Whereas, simulating 

the same problem with compact scheme alone takes over 120 s. We note that for 

simulations involving complex transients, the hybrid approach will yield further speed 

enhancement.  

 

Figure 3: Screenshot of SPRESSO GUI showing typical parameters for performing a 

high-fidelity simulation of ITP using compact scheme. For this particular simulation data 

from the simulation shown in Figure 2  was used as the initial condition. Simulating a 

steady state ITP problem with an initial condition resembling the final solution yields 

significant computational efficiencies.  

 

5. Analyzing simulation data 

 Simulation data is saved by SPRESSO in MAT-file format of MATLAB. For a 

simulation based on an input file named Input.m, simulation data are saved as 

Input.mat in the directory containing the corresponding input file. Data are usually 

saved automatically at the completion of simulation. However, users can also terminate 

the simulation before completion, and save the data by clicking Stop/Save button. 
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Table 1 describes the variables in data file corresponding to different physicochemical 

quantities. 

 

Table 1: Important variables in SPRESSO data file corresponding to various 

physicochemical quantities. Data are saved at all N grid points and different time steps. 

The number of times steps at which data are saved is given by 

Ntimes=length(tVecOut), and the number of species is given by Nspecies. 

Variable in Data 

File 

Physicochemical 

Quantity 

Data Type and Usage 

phiVecAllTimes Coordinates of grid 

points in physical 

domain  

at different time 

steps.  

 Matrix Size: N×2×Ntimes 

 Coordinates in moving frame 

       = phiVecAllTimes(:,1,:) 

 Coordinates in stationary frame 

   = phiVecAllTimes(:,2,:) 

tVecOut Physical time  

at which data are 

saved 

Vector Length: N 

 

pHVecAllTimes pH at all grid points 

at different time 

steps 

Matrix Size: N×Ntimes 

 

SigVecAllTime Electrical 

conductivity 

at all grid points at 

different time steps 

Matrix Size: N×Ntimes 

 

cMatAllTimes Species 

concentrations  

at all grid points at 

different time steps 

 Matrix Size: 

N×(Nspecies+1)×Ntimes 

 Concentration of  species   

j={1,2,...,Nspecies}   

=cMatAllTimes(:,j,:)  

 Hydronium ion concentration 

=cMatAllTimes(:,end,:) 
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6. Routinely encountered issues with SPRESSO 

 Several runtime issues with SPRESSO have been reported over the past, and we 

have done our best to address them in the latest version of code. Issues with SPRESSO 

often stem from erroneous user inputs. We here document routinely committed input 

errors, and their remedies. 

1) Problem: The most commonly committed error is to input the species concentrations 

in millimolar (mM) units in the InputTable.  This might be the due to common 

usage of millimolar units in electrophoresis community. 

Solution: Input species concentrations in molar (M) units. 

 

2) Problem: MATLAB gives the following error on clicking GUI buttons: 

Undefined function 'SpressoGUI' for input arguments of 

type 'struct'. Error in guidemfile/@(hObject,eventdata) 

SpressoGUI ('StartButton_Callback' ,hObject,eventdata, 

guidata(hObject)) 

Error while evaluating uicontrol Callback. 

Solution: Such runtime errors are caused when users navigate to a different working 

directory in MATLAB and try using SPRESSO GUI. To run SPRESSO, it is 

necessary that the present working directory in MATLAB is the one containing 

Spresso.m file. 

 

3) Problem: ITP zones are not stationary while simulating in a moving frame of 

reference. 

Solution: SPRESSO uses the electromigration speed of the first species defined in 

InputTable to define the speed of moving frame of reference. Therefore, for ITP 

simulations with moving frame of reference, the first species in the InputTable 

should be the leading electrolyte (LE). 

 

4) Problem: Simulation of ITP shows zone boundaries dispersing over time, and not 

sharpening as expected. 

Solution: Switch the current direction by changing the sign of input current. 
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5) Problem: Simulations take extremely long time to complete. 

Solution: This issue usually results while using large number of points (1000 or 

more). SPRESSO includes adaptive grid refinement scheme which enables faster 

simulations with order 100 grid points, without compromising accuracy. Also, using 

extreme grid adaptation (i.e., with high grid adaptation parameters) can decrease 

simulation speed. We encourage users to run numerical experiments to find optimal 

number of grid points and adaptive grid refinement parameters to achieve shorter 

simulation times. Numerical parameters are often problem specific and we provide 

typical values of these parameters in Section 1. 

 

6) Problem: Simulations with sixth-order compact scheme yield oscillatory solutions. 

Solution: The sixth-order compact scheme is not unconditionally stable and can yield 

oscillatory solutions due to insufficient grid density. Oscillatory solutions can be 

avoided by increasing the number of grid points, or increasing the value of adaptive 

grid parameters. Also, for fast and approximate simulations we suggest using the 

unconditionally stable SLIP scheme which does not yield oscillations. 

 

7) Problem: GUI overwrites manually customized input file. 

Solution: When input file is saved through GUI, the code uses input values in GUI to 

write a new input file. This overwrites manual changes made to the input file. 

Therefore, we suggest saving the customized input file through a text editor and not 

the GUI.  

 

8) Problem: While using a customized input file, GUI plots incorrect initial conditions. 

Solution: The code in its current form uses the inputs from GUI to plot initial 

conditions using a set of predefined concentration distributions. However, this does 

not affect simulations or real time data visualization. While using manually 

customized input files, the GUI plots correct concentration profiles upon starting the 

simulation. 


